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Recent multicolor photon-echo experiments revealed a long-lasting quantum coherence between excitations
on the donor and acceptor in photosynthetic systems. Identifying the origin of the quantum coherence is
essential to fully understand photosynthesis. Here we present a generic model in which a strong intermolecular
steric restoring force in densely packed pigment-protein complexes results in a spatial correlation in confor-
mational �static� variations of chromophores, which in turn induces an effective coupling between high-
frequency �dynamic� fluctuations in donor and acceptor. The spatially correlated static and dynamic fluctua-
tions provide a favorable environment to maintain quantum coherence, which can consistently explain the
photon-echo measurements.
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Quantum mechanics suggests that any particle can behave
like a wave �1�. Such a wavelike behavior or quantum co-
herence, however, is vulnerable to scatterings and fluctua-
tions and is rarely observed in biological systems, where
both conformational variations and high-frequency fluctua-
tions are strong. It is thus widely believed that biological
processes can be adequately described by deterministic clas-
sical motions. This conventional view is challenged by re-
cent multicolor photon-echo measurements, where a surpris-
ingly long-lasting coherence in photosynthesis �2,3�, one of
the most important processes to living organisms, was ob-
served. Coherent energy transfer in photosynthesis has pro-
found implications in energy conversion and transportation
in biological systems. In these experiments, the off-diagonal
density-matrix elements, which measure the quantum coher-
ence between excitations on donor and acceptor chro-
mophores in photosynthetic bacteria, were found to decay
much slower than dephasing of the excitations on the donor
�3�. To fit the experimental data, a correlation between fluc-
tuations in the donor and acceptor was imposed �3�. The
mechanism leading to such a correlation and how it affects
the quantum coherence, however, remain unclear. In addi-
tion, it was assumed in the fitting that a high-frequency vi-
brational mode couples to the donor but not the acceptor,
which is unusual and hard to justify. Existing theories on
energy transfer with multiple chromophores usually assume
an independent environment associated with each chro-
mophore �4–7� and do not explain the experiments. On the
other hand, spatially correlated disorder and fluctuations
were invoked to understand incoherent processes such as
electrical transport in polymer films �8� and fluorescent reso-
nant energy transfer in one-dimensional polyproline peptides
�9�. In this Rapid Communication we present a unified
theory to account for spatially correlated conformational
�static� variations and high-frequency �dynamic� fluctuations
in densely packed pigment-protein complexes. The calcu-
lated photon-echo signals based on this generic theory dis-
play a long-lasting coherence, as observed in the experi-
ments.

The reaction center �RC� of the photosynthetic bacteria
studied in the experiments consists of six planar chro-
mophores in close proximity �5–10 Å� �10�. These chro-
mophores exhibit two kinds of local environmental fluctua-
tions: Slow-varying conformational variations, in particular,
deviations in orientations of the planar chromophores from
equilibrium, as shown in large-scale molecular dynamics of
photosynthetic proteins �11�, and high-frequency vibrations
or rotations with respect to the averaged geometry of the
chromophores. To understand the impact of such a dense
packing of chromophores, as a generic prototype, we carry
out first-principles calculations �12� of a system comprising
two planar benzene molecules with a relative angle, �, sepa-
rated by a distance, d. We see from Fig. 1 that the total
energy of the system can be well-described by �E= K

2 �2 and
that the intermolecular elastic constant K increases quickly
as d becomes small �dense packing�. Compared to benzene, a
same tilt angle in larger molecules, as those in the RC,
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FIG. 1. Total energy of two benzene molecules, represented by
the two solid bars in the schematic drawing, as a function of � with
d=2.55 Å �squares� and d=1.85 Å �triangles�. �1 ��2� is the orien-
tation change of the upper �lower� benzene molecule from its equi-
librium �dashed bars�, around the C2� axis between 1,4 C atoms of
benzene, and �= ��1−�2�. Solid and dashed lines delineate �E
=8.634�2 and 24.62�2, respectively. The inset shows �����2 as a
function of �, where the straight lines are plotted to guide the eye.
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corresponds to a longer atomic displacement and the steric
energy is significant even at relatively large intermolecular
distances. These results suggest the following general Hamil-
tonian for the conformational variations:

HC = �
�i,j	

K

2
��i − � j�2 +

s

2�
i

�i
2, �1�

where the chromophores are placed in a cubic lattice �with a
lattice constant a� and �i represents the orientation variation
of the chromophore on site i. A possible intramolecular steric
energy with s being the corresponding elastic constants is
included for completeness. Using the Fourier transform, �i

= 1
N�q��q�eiq·ri, where N is the total number of sites in the

cubic lattice, and applying the equipartition law
N−1����q��2�Kq2a2+s2�−1	=kBT /2, where kB is the Boltz-
mann constant and T is the temperature, we have �8�

��i� j	 
 ��i
2	� = ��i

2	
a

r
e−	r/a, �2�

where r= �r�= �ri−r j�, 	=�s /K, and ��i
2	=kBT /4
K. This ex-

pression indicates that conformational variations in densely
packed chromophores, where K�s and 	�1, are not inde-
pendent but similar in magnitude when they are in proximity.
The factor � measures the correlation strength of the confor-
mational �static� variations. The variance of the relative con-
formational variation between two chromophores is ���i
−� j�2	=2��i

2	�1−��, which can be much smaller than that of
individual chromophores, ��i

2	.
These spatially correlated conformational variations also

affect the high-frequency fluctuations. A finite orientation
change �i in a chromophore would cause a shift in the origin
of the high-frequency fluctuations, xi

0, which is generally
proportional to �i �small � approximation�, xi

0=
�i. To see
this effect clearly, we assume that the dynamic fluctuations
xi�t� in two chromophores �i=1,2� contain a signal mode
with the same frequency, �; the Hamiltonian of the fluctua-
tions reads

HR =
1

2 �
i=1,2

�pi
2 + �2�xi − 
�i�2� , �3�

where pi are the corresponding momenta of xi. We can obtain
an effective Hamiltonian for the fluctuations by integrating
out �k in the partition function, Z=��iDpiDxi
���kD�ke

−�HC+HR�/kBT=��iDpiDxie
−Hef f/kBT, where �D rep-

resents functional integrations, and

Hef f = �
i

1

2
�pi

2 + �2xi
2� −

�4
2x1x2a

4
Kr
e−	r/a, �4�

which has two normal modes, x�= �x1�x2� /�2, with corre-
sponding frequencies

��
2 = �2
1 �


2�2a

4
Kr
e−	r/a� 
 �2�1 � �� . �5�

The frequency-splitting parameter ���. To verify that Eqs.
�3� and �4� adequately capture the physics, we analyze the
vibrational spectrum of the two-benzene system. To avoid
ambiguity we focus on the C-H stretch mode, which has a

single peak at �0 from the first-principles calculations. In the
two-benzene system, the mode split into multiple peaks at �i.
According to Eq. �5�, the averaged frequency splitting,
����2
���i

2 /�0
2�−1�2=�2� ��1�2	2��2, or �����2��, as

confirmed in Fig. 1. Hence the spatially correlated conforma-
tional variations induce an effective coupling between the
dynamic fluctuations in the two chromophores, which creates
an in-phase mode x+ with a lower frequency and an out-of-
phase mode x− with a higher frequency.

To gain insight into the correlated dynamic fluctuations, it
is instructive to examine the temporal correlation between xi
and xj, kij���
xi�t�xj�t−��. To evaluate kij���, we notice that
the new normal modes x� can be generally described by
damped oscillators, which obey the following Langevin

equation,
d2x�

dt2 +��
2 x�−�

dx�

dt =F�t�, where � is the damping
factor and F�t� is a random force. According to the
fluctuation-dissipation theorem �FDT�, X�

2 ���=2�kBT / ���2

−��
2 �2+�2�2� with X����=�−�

+�dtei�tx��t�. The temporal
correlation functions of the normal modes are K����

x��t�x��t−��=�−�

+�X�
2 ���ei��d�,

K���� =
kBTe−����/2

��
2 
cos ��� � +

�

2���
sin ��� �� ,

where ���
2=��

2 −�2 /4. Here, for clarity and tractability, the
classical form of the FDT is adopted. The more subtle quan-
tum FDT does not qualitatively modify the results �13�.
Since x� are orthogonal, we have k11���=k22���= 1

2 �K+���
+K−���� and k12���=k21���= 1

2 �K+���−K−����. Figure 2 shows
k11�t� and k12�t� for various dynamic correlation strengths. In
the absence of spatial correlation, �=0, the two dynamic
fluctuations x1 and x2 are independent, and there is no tem-
poral correlation between them. With increase of �, the tem-
poral correlation between x1 and x2 becomes more signifi-
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FIG. 2. Temporal correlation functions �left panels� and dy-
namic dephasing functions �right panels� for different dynamic cor-
relation strengths ���. Solid and dashed lines are k12�t� and k11�t� in
the left panels, and g̃+−

d �t� and g++
d �t� in the right panels. Panels

�a�–�c� correspond to �=0, 0.36, and 0.72, respectively. The in-
phase frequency is fixed, ��+=250 cm−1, ��=40 cm−1, c1=c2

=2.6 �cm−1�1/2 fs−1, cos �=0.92, and T=77 K. These values are
consistent with those used in Ref. �3�.
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cant. At �=0.72, k12�t� and k11�t� are almost the same,
indicating that x1 and x2 are largely synchronized.

The static and dynamic fluctuations will cause the energy
of an excitation �exciton� on chromophore i to vary around
its average value, Ei

0, �Ei�t�=�Ei
s+�Ei

d=�i�i+cixi�t�, where
�i and ci are the coupling constants between the exciton and
the local static and dynamic fluctuations, which will lead to
dephasing of the exciton and broaden the absorption line.
The line-shape function in the time domain is defined by �16�

Jii�t� = e−�i/��Ei
0t�e−�i/���0

t dt��Ei�t��	 
 e−�i/��Ei
0t−gii�t�, �6�

where gii�t�=gii
s �t�+gii

d�t� consists of contributions from both
static and dynamic fluctuations. A large gii�t� means a fast
dephasing of the excitation in chromophore i. By using the
relation �eiX�t�	=exp�− 1

2X2�t�	, gij�t� can be written as

gij
s �t� =

1

2�2�i� j��i� j	t2 

1

2
�ijt

2,

gij
d �t� =

cicj

�2 �
0

t

d��t − ��kij��� ,

which can be worked out analytically,

�ii =
�i

2kBT

4
�2K
, �12 =

�1�2�kBT

4
�2K
,

gii
d�t� =

kBTci
2

2�2 �G��+,t�
�+

4 +
G��−,t�

�−
4 � ,

g12
d �t� =

kBTc1c2

2�2 �G��+,t�
�+

4 −
G��−,t�

�−
4 � ,

G��,t� = ��t� − e−��t�/2�1 + 
 �

2��
�2�1/2

cos���t + � − ��� + 1,

where ��2=�2−�2 /4, �=tan−1 ��� / ��� /2�2−��2�, and ��
=tan−1 � /2��.

To study the coherence in exciton transfer from donor to
acceptor, we notice that only the difference between the do-
nor and acceptor environments is important to the transfer
and consider the Hamiltonian, H=He+Hf. The excitonic
Hamiltonian is

He = E�a1
†a1 − a2

†a2� + U�a1
†a2 + a2

†a1� , �7�

where ai
† �ai� creates �annihilates� an exciton on the donor

�i=1� or acceptor �i=2�, E= �E1
0−E2

0� /2, and U is the exciton
hopping between the donor and acceptor. The interaction be-
tween the exciton and the fluctuating environments is

Hf =
1

2
�c1x1 − c2x2 + �1�1 − �2�2��a1

†a1 − a2
†a2� . �8�

Hamiltonian H has the same form as the spin-boson model
�14� widely used to study energy transfer in photosynthesis
�4–7,18,19�, except that its environmental variables are now
spatially correlated. When the exciton hopping U is not neg-
ligible, it is more appropriate to study the coherence in the

eigenstate basis of He. He=��a+
†a+−a−

†a−� with �=�E2+U2.
The dephasing functions for the eigenstates ��� can be simi-
larly defined as in Eq. �6� and expressed in terms of
gij, g++�t�=c4g11�t�+s4g22�t�+2s2c2g12�t�, g−−�t�=c4g22�t�
+s4g11�t�+2s2c2g12�t�, and g+−�t�=c2s2�g11�t�+g22�t��
+ �s4+c4�g12�t�, where c
cos�� /2�, s
sin�� /2�, and �
=−tan−1�U /E�.

The dynamics of the exciton density matrix can
be obtained by solving the Liouville equation in the

interaction representation, d�*�t�
dt = i

� ��*�t� ,Hf�, with ��t�
=e−iHet/��*�t�eiHet/�. Explicitly, for the off-diagonal �

+−
* ,

d�+−
*

dt
=

i

�
�
m

��+ ��*�m��m�Hf�t�� − �e−�i/���Em−E−�t

− �+ �Hf�t��m��m��*� − �e−�i/���E+−Em�t� .

We adopt the adiabatic approximation �15�, where only the
terms with Em=E− or Em=E+ should be retained, since all the
others, because of their fast varying exponential coefficients,
give a negligible contribution. The simplified equation
has a general solution �

+−
* =�

+−
* �0�exp i�0

t �+−�t��dt, where
�+−�t�= ��+�Hf�t��+ �− �−�Hf�t��− �� /� =cos ���2�c+x++c−x−�
+�1�1−�2�2� /�and c�= �c1�c2� /2. The coherence dynam-
ics in exciton transfer can be quantified by the following
function:

J̃+−�t� = e−�i/���E+−E−�t� �+−
* �t�

�+−
* �0�� = e−�i/��2�t−g̃+−�t�, �9�

where g̃+−�t�= g̃+−
s �t�+ g̃+−

d �t�, and

g̃+−
s �t� =

cos2 �

2
��11 + �22 − 2�12�t2,

g̃+−
d �t� =

2 cos2 �kBT

�2 � c+
2G��+,t�

�+
4 +

c−
2G��−,t�

�−
4 � .

g̃+−�t� and gij�t� are related, g̃+−�t�=g++�t�+g−−�t�−2g+−�t�
=cos2 ��g11�t�+g22�t�−2g12�t��. The inhomogeneous broad-

ening in J̃+−, caused by the static fluctuations, is 1 /T
2
*

=cos ���11+�22−2�12. It is clear that as the correlation be-
tween static fluctuations, �12, increases, the inhomogeneous
broadening will be reduced. We compare in Fig. 2 g̃+−

d �t�
with g++

d �t�, the dynamic dephasing function for the eigen-
state ��� �approximate donor state�, for different correlation
strengths �. In the absence of spatial correlation, g̃+−

d �t� is
much larger than g++

d �t�, indicating a much faster dephasing
for the off-diagonal elements of the exciton density matrix
than the dephasing for excitons on the donor or acceptor. As
the correlation increases, g̃+−

d �t� is considerably reduced,
while g++

d �t� changes little. At �=0.72, g̃+−
d �t� becomes much

smaller than g++
d �t�, suggesting a long-lasting coherence of

the off-diagonal elements. In the overdamped regime,
i.e., G�� , t����t� the dynamic fluctuations give rise to a
homogeneous broadening, g̃+−

d �t�= �t� /T2 with 1 /T2
=2 cos2 �kBT��c+

2 /�+
4 +c−

2 /�−
4� /�2 for exciton transfer be-

tween the donor and acceptor. T2 �T
2
*� is the intrinsic �extrin-

sic� dephasing time for the exciton transfer from donor to
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acceptor. The intrinsic �extrinsic� dephasing time of the ex-
citon on the donor or acceptor, T3 �T

3
*�, can be similarly

defined via g++�t�, with 1 /T
3
*=�c4�11+s4�22+2s2c2�12, and

1 /T3=kBT�c1
2c4+c2

2s4+2c1c2c2s2����+
−4+�−

−4� /2�2. While T2
and T

2
* are always shorter than T3 and T

3
* in the absence of

the spatial correlation, a significant spatial correlation can
reverse the order and results in long T2 and T

2
*.

In the multicolor photon-echo experiments, three laser
pulses were applied to the sample at times 0, t1, and t2,
respectively. In a two-dimensional map of the echo signals as
a function of t1 and t2, an oscillatory behavior was observed
along the t2 axis but not along the t1 axis. To understand
these experiments, we compute the echo signals via
�3,16–19� S�t1 , t2���0

�dte−2f�t1,t2,t�, where f�t1 , t2 , t�=g++�t1
+ t2�−g+−�t1+ t2+ t�+g+−�t1�+g+−�t�−g+−�t2�+g−−�t2+ t�. The
left panels in Fig. 3 show S�t1 , t2� as a function of t2 with a
fixed t1=30 fs, as in Fig. 3 of Ref. �3�. When the correlation
is absent, the echo signal for t2�100 fs is a rapid monotonic
decay. Only when the correlations are strong enough does an
oscillatory behavior similar to the measurements appear. The
oscillatory behavior is a direct consequence of the long-
lasting coherence of the off-diagonal elements in the exciton
density matrix, caused by the spatially correlated static and
dynamic fluctuations. The right panels show S�t1 , t2� as a
function of t1 with a fixed t2=100 fs. No oscillatory behavior
is present even with strongly correlated fluctuations, which is
consistent with experiment. The reason is that by varying t1,
the echo signal mainly reflects the dephasing of the exciton
on the donor, g++�t�, which remains strong as the correlation
strengths increase, as shown in Fig. 2. For �� ,��
= �0.72,0.90�, the photon-echo signals, plotted in a color
map as a function of t1 and t2, resemble those from experi-
ment, although a quantitative explanation of experiment re-
quires further studies �13�.

In summary, we have developed a generic theory that
identifies the origin of the spatially correlated conformational
variations and high-frequency fluctuations in densely packed

chromophores in photosynthetic bacteria and elucidates their
effects on coherence dynamics. Further studies, including
molecular dynamics and electronic structures of the photo-
synthetic RC, are needed to quantitatively describe the quan-
tum coherence and photon-echo experiments. It is fascinat-
ing that the macroscopic and primitive elastic energy, when
acting collectively, can provide a favorable environment to
protect the microscopic and delicate quantum coherence in
strongly fluctuating biological systems.
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FIG. 3. Photon-echo signal as a function of t2 with a fixed t1

=30 fs �left panels� and as a function of t1 with a fixed t2=100 fs
�right panels� for different static and dynamic correlation strengths,
� and �. Panels �a�–�c� correspond to �� ,��= �0,0�, �0.36,0.45�, and
�0.72,0.90�, respectively. Parameters are ���11=���22=20 cm−1.
Other parameters are the same as in Fig. 2.
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